Dynamically consistent parameterization of mesoscale eddies. Part III: Deterministic approach
نویسندگان
چکیده
منابع مشابه
Parameterization of Mixed Layer Eddies. Part I: Theory and Diagnosis
Ageostrophic baroclinic instabilities develop within the surface mixed layer of the ocean at horizontal fronts and efficiently restratify the upper ocean. In this paper a parameterization for the restratification driven by finite-amplitude baroclinic instabilities of the mixed layer is proposed in terms of an overturning streamfunction that tilts isopycnals from the vertical to the horizontal. ...
متن کاملParameterization of Mixed Layer Eddies. Part II: Prognosis and Impact
The authors propose a parameterization for restratification by mixed layer eddies that develop from baroclinic instabilities of ocean fronts. The parameterization is cast as an overturning streamfunction that is proportional to the product of horizontal buoyancy gradient, mixed layer depth, and inertial period. The parameterization has remarkable skill for an extremely wide range of mixed layer...
متن کاملThe Influence of Mesoscale Eddies on Coarsely Resolved Density: An Examination of Subgrid-Scale Parameterization
Coarse-resolution numerical models of ocean circulation rely on parameterizations of unresolved mesoscale eddy effects. In order to investigate the role of eddy-flux divergences in the density equation, the GFDL Modular Ocean Model (MOM) has been configured as a simple flat-bottomed channel model with sufficient resolution to represent mesoscale eddies. Eady-type baroclinic instability and a wi...
متن کاملMesoscale eddies transport deep-sea sediments
Mesoscale eddies, which contribute to long-distance water mass transport and biogeochemical budget in the upper ocean, have recently been taken into assessment of the deep-sea hydrodynamic variability. However, how such eddies influence sediment movement in the deepwater environment has not been explored. Here for the first time we observed deep-sea sediment transport processes driven by mesosc...
متن کاملOceanic mass transport by mesoscale eddies.
Oceanic transports of heat, salt, fresh water, dissolved CO2, and other tracers regulate global climate change and the distribution of natural marine resources. The time-mean ocean circulation transports fluid as a conveyor belt, but fluid parcels can also be trapped and transported discretely by migrating mesoscale eddies. By combining available satellite altimetry and Argo profiling float dat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ocean Modelling
سال: 2018
ISSN: 1463-5003
DOI: 10.1016/j.ocemod.2018.04.009